Topological Degree of Maps:

Topological degree theory i1s a generalization of the
winding number of a curve in the complex plane. It can
be used to estimate the number of solutions of an
equation. When one solution of an equation 1s easily
found, degree theory can often be used to prove
existence of a second, nontrivial, solution. the winding
number of a closed curve in the plane around a given
point 1s an integer representing the total number of times
that curve travels counterclockwise around the point. The
winding number depends on the orientation of the curve,
and 1s negative 1f the curve travels around the point
clockwise.



This curve has winding number two around the point p.



There are different types of degree for different types of maps: e.g.
for maps between Banach spaces there 1s the Brouwer degree in R”
, the Leray-Schauder degree for compact mappings in normed
spaces.

Definition of the Degree of a Mapping

Let 2 be a bounded open set in R™ and let f : {2 — R™ be a mapping which
satisfies

. f e CHQR")NC(OQ,RM), (1)
e y € R™ is such that

y & f(09), (2)
e if r € () is such that f(x) = y then

f'(z) = Df(x) (3)

1s nonsingular.



flz)=y

Definition Let f satisfy (1), (2), (3). Define
ke

d(f,Qy) =) sgn det f'(z;)

i=1
where x1,-- -,z are the solutions of (4) in ) and

+1, ifdet f'(z;) >0
sgn det f'(z;) =

If (4) has no solutions in Q2 we let d(f,Q,y) = 0.

—1, ifdet f'(z;) <0, i=1,---

(4)



The Brouwer degree d(f,Q,y) to be defined for mappings f € C(2,R")
which satisfy (2) will coincide with the number just defined in case f satisfies

(1). (2), (3).

Lemma Let fy and f5 satisfy (1), (2), (3) and let € > 0 be such that
|fi(z) —y| >Te, z€0Q, i=1,2,

|fi(z) — fo(z)] <€, z€Q,

then

d(f1,9,y) = d(f2,,y).

PROOF. assume that y = 0, since by Definition
d(f,Q,y) =d(f —y,Q,0).
let g € C'[0,00) be such that

g(s)=1, 0<s< 2



0<g(r)<1, 2¢<r<3e
g(r) =0, 3e<r < .

Consider
fa(z) = [1 = g(|fi(z))]f1(z) + g(|f1(z)]) f2(=),
then
f3 € CH(Q,R*)NC(Q,R")
and
|fi(z) — fi(z)| <€, i,k=1,2,3, 2€Q
|fi(z)] > 6e, z€0Q, i=1,2,3.
Let ¢; € C[0,00), i = 1,2 be continuous and be such that
o1(t) =0, 0<t<de, e <t < oo

d2(t) =0, e<t<oo, ¢(0)=0

di(|lz|)dz =1, i=1,2.
Rn



We note that
fa= fi, if |fi] > 3e
fa=fo, if |fi] <2e
Therefore

é1(| fa(x)|)det fa(x) = d1(|f1(x)|)det fi(x)
¢2(| fa(z)|)det f3(x) = d2(|f2(z)|)det fo(z).

Properties of the Brouwer Degree

Proposition (Solution property) Let f € C(Q,R™) be such that y € f(99Q)
and assume that d(f,€Q.,y) # 0. Then the equation

flx)=y

has a solution in €.



Proposition (Continuity property) Let f € C(Q,R") and y € R" be such
that d(f,,y) is defined. Then there exists € > 0 such that for all g € C(Q,R"™)
and y €R with ||f —g|| + |y — 3| <e

d(f,Q,y) =d(g,92,9).

Proposition (Homotopy invariance property) Let f,g € C(Q,R") with
f(z) and g(z) # y for x € 9Q and let h : [a,b] x Q& — R™ be continuous such
that h(t,z) # y, (t,z) € [a,b] x Q. Further let h(a,z) = f(z), h(b,z) = g(z),
x € Q. Then

d(f,Q,y) =d(g,2,9);

more generally, d(h(t,-),Q,y) = constant fora <t < b.

Corollary Let f € C(Q,R") be such that d(f,Q,y) is defined. Let g €
C(2,R™) be such that |f(z) — g(z)| < |f(z) —y|, = € 0. Then d(f,,y) =

d(g,.y).

Proor. For 0 <t <1 and z € 9€) we have that
ly —tg(z) — (1 = t)f(z)| = |(y — f(z)) — t(g(z) — f(z))]

> |y - f(x)| - tlg(x) — f(x)| >0 since 0<t<1,



hence h : [0,1] x @ — R™ given by h(t,z) = tg(x) + (1 — t)f(x) satisfies the conditions of

Homotopy invariance property and the conclusion follows from that proposition.

Proposition (Additivity property) Let Q2 be a bounded open set which is

the union of m disjoint open sets Qy,---,Q,,, and let f € C(2,R") and y € R"
be such that y € f(9€);),i=1,---,m. Then

d(f~ Q9y) = Zd(f9 Qlay)
fa=]

Proposition (Excision property) Let f € C (Q,R™) and let K be a closed
subset of ) such that y ¢ f(0QU K'). Then

d(f,Q,y) =d(f,2\ K, y).

Proposition (Cartesian product formula) Assume that 2 = Q; x Q9 Is a
bounded open set in R™ with €y open in R? and €29 open in RY, p+ q = n.
For x € R" write x = (x1,22), x1 € RP, 0 € RY. Suppose that f(z) =
(fi(zy), fo(x2)) where f; : Q; — RP, f5 : )y — R9 are continuous. Suppose
y = (y1.y2) € R™ is such that y; ¢ fi(0;).1 = 1,2. Then

d(fa Qa y) e d(flsﬂle yl)d(er Qg, y?-)



Proor. Using an approximation argument, we may assume that f, fi and fo
satisfy also (1) and (3) (interpreted appropriately). For such functions we have

d(f,2y)= ) sgndet f'(x)

z€f~1(y)
fi(z1) 0
i Z sgn det ( 1 )
z€f-1(y) 0 fa(z2)
_ 3 sgn det fi(z1) sgn det f3(x2)
zi € f~(yi)
g=1.2

]~

Y sgndet fi(z:) = d(f1, 21, y1)d(f2, 22, 12).
lzle.r‘_l(yl)

i



The theorems of Borsuk and Brouwer

Theorem (Borsuk) Let Q2 be a symmetric bounded open neighborhood of
0 cR” (ie. ifx €, then —x € Q) and let f € C(Q2,R™) be an odd mapping
(i.e. f(z)=—f(—=x)). Let 0 & f(99Q), then d(f,€,0) is an odd integer.

Theorem (Brouwer fixed point theorem) Let f € C(QR"), Q = {z €
R" : |z| < 1}, be such that f: Q — Q. Then f has a fixed point in €, i.e. there
exists x € ) such that f(z) = z.

PROOF. Assume f has no fixed points in 9. Let h(t,z) =z —tf(z), 0 <t < 1.
Then h(t,z) #0,0 <t <1, z € 9Q and thus d(h(¢,0),92,0) = d(h(0,0),£,0)
by the homotopy property. Since d(id,,0) = 1 it follows from the solution
property that the equation z — f(z) = 0 has a solution in 2. I



